A data-driven approach to local gravity field modelling using spherical radial basis functions

نویسندگان

  • R. Klees
  • T. Wittwer
چکیده

We propose a methodology for local gravity field modelling fromgravity data using spherical radial basis functions. The methodology comprises two steps: in step 1, gravity data (gravity anomalies and/or gravity disturbances) are used to estimate the disturbing potential using least-squares techniques. The latter is represented as a linear combination of spherical radial basis functions (SRBFs). A data-adaptive strategy is used to select the optimal number, location, and depths of the SRBFs using generalized cross validation. Variance component estimation is used to determine the optimal regularization parameter and to properly weight the different data sets. In the second step, the gravimetric height anomalies are combined with observed differences between global positioning system (GPS) ellipsoidal heights and normal heights. Thedata combination iswritten as the solutionof a Cauchy boundary-value problem for the Laplace equation. This allows removal of the non-uniqueness of the problem of local gravity field modelling from terrestrial gravity data. At the same time, existing systematic distortions in the gravimetric and geometric height anomalies are also absorbed into the combination. The approach is used to compute a height reference surface for the Netherlands. The solution is compared with NLGEO2004, the official Dutch height reference surface, which has been computed using the same data but a Stokes-based approach with kernel modification and a geometric six-parameter “corrector surface” to fit the gravimetric solution to the GPS-levelling points. A direct comparison of both height reference surfaces shows an RMS difference of 0.6cm; the maximum difference is 2.1cm. A test at R. Klees (B) · R. Tenzer · I. Prutkin · T. Wittwer Delft Institute of Earth Observation and Space Systems (DEOS), Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands e-mail: [email protected] independent GPS-levelling control points, confirms that our solution is in no way inferior to NLGEO2004.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Choice of the Spherical Radial Basis Functions in Local Gravity Field Modeling

The choice of the optimal spherical radial basis function (SRBF) in local gravity field modelling from terrestrial gravity data is investigated. Various types of SRBFs are considered: the point-mass kernel, radial multipoles, Poisson wavelets, and the Poisson kernel. The analytical expressions for the Poisson kernel, the point-mass kernel and the radial multipoles are well known, while for the ...

متن کامل

Numerical Solution of Fractional Black Scholes Equation Based on Radial Basis Functions Method

Options pricing have an important role in risk control and risk management. Pricing discussion requires modelling process, solving methods and implementing the model by real data in a given market. In this paper we show a model for underlying asset based on fractional stochastic models which is a particular type of behavior of stochastic assets changing. In addition a numerical method based on ...

متن کامل

Gravity acceleration at the sea surface derived from satellite altimetry data using harmonic splines

Gravity acceleration data have grand pursuit for marine applications. Due to environmental effects, marine gravity observations always hold a high noise level. In this paper, we propose an approach to produce marine gravity data using satellite altimetry, high-resolution geopotential models and harmonic splines. On the one hand, harmonic spline functions have great capability for local gravity ...

متن کامل

Using Chebyshev polynomial’s zeros as point grid for numerical solution of nonlinear PDEs by differential quadrature- based radial basis functions

Radial Basis Functions (RBFs) have been found to be widely successful for the interpolation of scattered data over the last several decades. The numerical solution of nonlinear Partial Differential Equations (PDEs) plays a prominent role in numerical weather forecasting, and many other areas of physics, engineering, and biology. In this paper, Differential Quadrature (DQ) method- based RBFs are...

متن کامل

Combination of GOCE gravity gradients in regional gravity field modelling using radial basis functions

The satellite gravity mission GOCE measured the second-order derivatives of the Earth’s gravitational potential with high accuracy. The GOCE data enrich our gravity field knowledge especially at spatial resolutions from 750km down to 80km. In this paper we carry out regional gravity field analysis using radial localising basis functions that permit the combination of different data types tailor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008